Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(2): 47, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285274

RESUMO

MAIN CONCLUSION: Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.


Assuntos
Craterostigma , Traqueófitas , Craterostigma/genética , Dessecação , Melhoramento Vegetal , Morte Celular , Água
2.
BMC Plant Biol ; 23(1): 654, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110858

RESUMO

BACKGROUND: Drought is one of the main consequences of global climate change and this problem is expected to intensify in the future. Resurrection plants evolved the ability to withstand the negative impact of long periods of almost complete desiccation and to recover at rewatering. In this respect, many physiological, transcriptomic, proteomic and genomic investigations have been performed in recent years, however, few epigenetic control studies have been performed on these valuable desiccation-tolerant plants so far. RESULTS: In the present study, for the first time for resurrection plants we provide evidences about the differential chromatin accessibility of Haberlea rhodopensis during desiccation stress by ATAC-seq (Assay for Transposase Accessible Chromatin with high-throughput sequencing). Based on gene similarity between species, we used the available genome of the closely related resurrection plant Dorcoceras hygrometricum to identify approximately nine hundred transposase hypersensitive sites (THSs) in H. rhodopensis. The majority of them corresponds to proximal and distal regulatory elements of different genes involved in photosynthesis, carbon metabolism, synthesis of secondary metabolites, cell signalling and transcriptional regulation, cell growth, cell wall, stomata conditioning, chaperons, oxidative stress, autophagy and others. Various types of binding motifs recognized by several families of transcription factors have been enriched from the THSs found in different stages of drought. Further, we used the previously published RNA-seq data from H. rhodopensis to evaluate the expression of transcription factors putatively interacting with the enriched motifs, and the potential correlation between the identified THS and the expression of their corresponding genes. CONCLUSIONS: These results provide a blueprint for investigating the epigenetic regulation of desiccation tolerance in resurrection plant H. rhodopensis and comparative genomics between resurrection and non-resurrection species with available genome information.


Assuntos
Craterostigma , Lamiales , Craterostigma/genética , Craterostigma/metabolismo , Dessecação , Cromatina , Epigênese Genética , Proteômica , Lamiales/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transposases/genética , Transposases/metabolismo
3.
Physiol Plant ; 175(5): e14035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882305

RESUMO

The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae). Gas exchange, chlorophyll fluorescence, and leaf water status were monitored along the whole dehydration-rehydration cycle. Simultaneously, embolism formation and hydraulic functioning recovery were measured at leaf level using micro-computed tomography imaging. Photosynthesis and leaf hydraulic conductance ceased at relatively high water potential (-1.28 and -1.54 MPa, respectively), whereas the onset of leaf embolism occurred after stomatal closure and photosynthesis cessation (<-1.61 MPa). This sequence of physiological processes during water stress may be associated with the need to delay dehydration, to prepare the molecular changes required in the desiccated state. Complete rehydration occurred rapidly in the mesophyll, whereas partial xylem refilling, and subsequent recovery of photosynthesis, occurred at later stages after rewatering. These results highlight the importance of stomata as safety valves to protect the vascular system from embolism, even in a plant able to fully recover after complete embolism.


Assuntos
Craterostigma , Embolia , Desidratação , Microtomografia por Raio-X , Folhas de Planta/fisiologia , Fotossíntese , Secas , Estômatos de Plantas/fisiologia , Xilema/fisiologia
4.
World J Microbiol Biotechnol ; 39(10): 256, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37474779

RESUMO

Rhizosphere microbial communities play an important role in maintaining the health and productivity of the plant host. The rhizobacteria Pseudomonas putida P2 of Ramonda serbica and Bacillus cereus P5 of R. nathaliae were selected for treatment of the Belija wheat cultivar because of their plant growth-promoting (PGP) properties. Compared to the non-treated drought-stressed plants, the plants treated with rhizobacteria showed increased activity of the two major antioxidant enzymes, superoxide dismutase, and ascorbate peroxidase. Plants treated with the B. cereus P5 strain exhibited higher proline content under drought stress, suggesting that proline accumulation depends on the relative water content (RWC) status of the plants studied. Inoculation of wheat seeds with the P. putida P2 strain improved water status by increasing RWC and alleviating oxidative stress by reducing H2O2 and malondialdehyde concentrations in plants exposed to severe drought, possibly also helping plants to overcome drought through its 1-aminocyclopropane-1-carboxylic acid deaminase activity. Analysis of data from Next Generation sequencing (NGS) revealed that the dominant bacterial taxa in the rhizosphere of resurrection plants R. serbica and R. nathaliae were extremophilic, thermotolerant, Vicinamibacter silvestris, Chthoniobacter flavus, and Gaiella occulta. From the fungi detected Penicillium was the most abundant in both samples, while Fusarium and Mucor were present only in the rhizosphere of R. serbica and the entomopathogenic fungi Metarhizium, and Tolypocladiumu only in the rhizosphere of R. nathaliae. The fungal communities varied among plants, suggesting a stronger environmental influence than plant species. Our study demonstrates the importance of in vivo experiments to confirm the properties of PGP bacteria and indicates that the rhizosphere of resurrection plants is a valuable source of unique microorganisms that can be used to improve the drought stress tolerance of crops.


Assuntos
Craterostigma , Microbiota , Triticum/microbiologia , Secas , Rizosfera , Peróxido de Hidrogênio , Água , Bacillus cereus , Prolina , Raízes de Plantas/microbiologia
6.
Plant J ; 114(2): 231-245, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36843450

RESUMO

Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within the Craterostigma genome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. The Craterostigma genome contains almost 200 tandemly duplicated early light-induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation-responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.


Assuntos
Craterostigma , Craterostigma/fisiologia , Dessecação , Água/metabolismo , Adaptação Fisiológica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499377

RESUMO

Resurrection plants are able to deal with complete dehydration of their leaves and then recover normal metabolic activity after rehydration. Only a few resurrection species are exposed to freezing temperatures in their natural environments, making them interesting models to study the key metabolic adjustments of freezing tolerances. Here, we investigate the effect of cold and freezing temperatures on physiological and biochemical changes in the leaves of Haberlea rhodopensis under natural and controlled environmental conditions. Our data shows that leaf water content affects its thermodynamical properties during vitrification under low temperatures. The changes in membrane lipid composition, accumulation of sugars, and synthesis of stress-induced proteins were significantly activated during the adaptation of H. rhodopensis to both cold and freezing temperatures. In particular, the freezing tolerance of H. rhodopensis relies on a sucrose/hexoses ratio in favor of hexoses during cold acclimation, while there is a shift in favor of sucrose upon exposure to freezing temperatures, especially evident when leaf desiccation is relevant. This pattern was paralleled by an elevated ratio of unsaturated/saturated fatty acids and significant quantitative and compositional changes in stress-induced proteins, namely dehydrins and early light-induced proteins (ELIPs). Taken together, our data indicate that common responses of H. rhodopensis plants to low temperature and desiccation involve the accumulation of sugars and upregulation of dehydrins/ELIP protein expression. Further studies on the molecular mechanisms underlying freezing tolerance (genes and genetic regulatory mechanisms) may help breeders to improve the resistance of crop plants.


Assuntos
Craterostigma , Lamiales , Magnoliopsida , Magnoliopsida/metabolismo , Dessecação , Folhas de Planta/metabolismo , Aclimatação , Sacarose/metabolismo , Congelamento , Desidratação/metabolismo
8.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955654

RESUMO

Global warming and drought stress are expected to have a negative impact on agricultural productivity. Desiccation-tolerant species, which are able to tolerate the almost complete desiccation of their vegetative tissues, are appropriate models to study extreme drought tolerance and identify novel approaches to improve the resistance of crops to drought stress. In the present study, to better understand what makes resurrection plants extremely tolerant to drought, we performed transmission electron microscopy and integrative large-scale proteomics, including organellar and phosphorylation proteomics, and combined these investigations with previously published transcriptomic and metabolomics data from the resurrection plant Haberlea rhodopensis. The results revealed new evidence about organelle and cell preservation, posttranscriptional and posttranslational regulation, photosynthesis, primary metabolism, autophagy, and cell death in response to desiccation in H. rhodopensis. Different protective intrinsically disordered proteins, such as late embryogenesis abundant (LEA) proteins, thaumatin-like proteins (TLPs), and heat shock proteins (HSPs), were detected. We also found a constitutively abundant dehydrin in H. rhodopensis whose phosphorylation levels increased under stress in the chloroplast fraction. This integrative multi-omics analysis revealed a systemic response to desiccation in H. rhodopensis and certain targets for further genomic and evolutionary studies on DT mechanisms and genetic engineering towards the improvement of drought tolerance in crops.


Assuntos
Craterostigma , Lamiales , Craterostigma/genética , Dessecação , Secas , Proteômica
9.
New Phytol ; 236(3): 943-957, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35872573

RESUMO

Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged periods of desiccation with a rapid restoration of physiological function upon rehydration. Specialized mechanisms are required to minimize cellular damage during desiccation and to maintain integrity for rapid recovery following rehydration. In this study we used respiratory activity measurements, electron microscopy, transcript, protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in fresh, desiccated and rehydrated detached H. rhodopensis leaves. We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immediately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and proteins involved in mitochondrial respiration and biogenesis were at comparable levels in fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated and rehydrated detached leaves. We observed a high abundance of alternative respiratory components which correlates with the observed high uncoupled respiration capacity in desiccated tissue. Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial composition is conserved and maintained at a functional state allowing for an almost immediate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were activated during desiccation which probably play a role in maintaining tolerance.


Assuntos
Craterostigma , Proteínas de Plantas , Craterostigma/metabolismo , Dessecação , Mitocôndrias/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
10.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887237

RESUMO

Drought and salinity have become major environmental problems that affect the production of agriculture, forestry and horticulture. The identification of stress-tolerant genes from plants adaptive to harsh environments might be a feasible strategy for plant genetic improvement to address the challenges brought by global climate changes. In this study, a dehydration-upregulated gene MfWRKY7 of resurrection Plant Myrothamnusflabellifolia, encoding a group IId WRKY transcription factor, was cloned and characterized. The overexpression of MfWRKY7 in Arabidopsis increased root length and tolerance to drought and NaCl at both seedling and adult stages. Further investigation indicated that MfWRKY7 transgenic plants had higher contents of chlorophyll, proline, soluble protein, and soluble sugar but a lower water loss rate and malondialdehyde content compared with wild-type plants under both drought and salinity stresses. Moreover, the higher activities of antioxidant enzymes and lower accumulation of O2- and H2O2 in MfWRKY7 transgenic plants were also found, indicating enhanced antioxidation capacity by MfWRKY7. These findings showed that MfWRKY7 may function in positive regulation of responses to drought and salinity stresses, and therefore, it has potential application value in genetic improvement of plant tolerance to abiotic stress.


Assuntos
Arabidopsis , Craterostigma , Arabidopsis/metabolismo , Craterostigma/genética , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética
11.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897721

RESUMO

WRKY transcription factors (TFs), one of the largest transcription factor families in plants, play an important role in abiotic stress responses. The resurrection plant, Myrothamnus flabellifolia, has a strong tolerance to dehydration, but only a few WRKY proteins related to abiotic stress response have been identified and functionally characterized in M. flabellifolia. In this study, we identified an early dehydration-induced gene, MfWRKY40, of M. flabellifolia. The deduced MfWRKY40 protein has a conserved WRKY motif but lacks a typical zinc finger motif in the WRKY domain and is localized in the nucleus. To investigate its potential roles in abiotic stresses, we overexpressed MfWRKY40 in Arabidopsis and found that transgenic lines exhibited better tolerance to both drought and salt stresses. Further detailed analysis indicated that MfWRKY40 promoted primary root length elongation and reduced water loss rate and stomata aperture (width/length) under stress, which may provide Arabidopsis the better water uptake and retention abilities. MfWRKY40 also facilitated osmotic adjustment under drought and salt stresses by accumulating more osmolytes, such as proline, soluble sugar, and soluble protein. Additionally, the antioxidation ability of transgenic lines was also significantly enhanced, represented by higher chlorophyll content, less malondialdehyde and reactive oxygen species accumulations, as well as higher antioxidation enzyme activities. All these results indicated that MfWRKY40 might positively regulate tolerance to drought and salinity stresses. Further investigation on the relationship of the missing zinc finger motif of MfWRKY40 and its regulatory role is necessary to obtain a better understanding of the mechanism underlying the excellent drought tolerance of M. flabellifolia.


Assuntos
Arabidopsis , Craterostigma , Arabidopsis/metabolismo , Craterostigma/genética , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo
12.
Phytochem Anal ; 33(6): 961-970, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35702035

RESUMO

INTRODUCTION: Ramonda serbica and R. nathaliae are resurrection plants that have the remarkable ability to survive the complete desiccation of their vegetative organs (i.e. leaves, stem, roots) during periods of drought and rapidly revive when rewatered and rehydrated. OBJECTIVE: To investigate metabolic changes in R. serbica and R. nathaliae during their desiccation and recovery process METHODS: Proton nuclear magnetic resonance (1 H-NMR) and gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach coupled with multivariate data analysis was utilised to identify the metabolomes of the plants from 90 biological replicates. RESULTS: Sucrose and the polyphenolic glycoside myconoside were predominant in almost equal amounts in all samples studied, regardless of their water content at sampling. During the dehydration process, a decrease in the relative content of fructose, galactose, and galactinol was observed while the contents of those metabolites were preserved in the partially rehydrated plants. Raffinose and myo-inositol were accumulated in dry samples. CONCLUSION: Using 1 H-NMR and GC-MS as two complementary analytical platforms provided a more complete picture of the metabolite composition for investigation of the desiccation and recovery process in resurrection plants.


Assuntos
Craterostigma , Craterostigma/metabolismo , Dessecação , Metabolômica , Folhas de Planta/metabolismo , Água/metabolismo
13.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408906

RESUMO

Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.


Assuntos
Craterostigma , Dessecação , Desenvolvimento Embrionário , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/metabolismo
14.
J Exp Bot ; 73(5): 1566-1580, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34747457

RESUMO

A group of vascular plants called homoiochlorophyllous resurrection plants evolved unique capabilities to protect their photosynthetic machinery against desiccation-induced damage. This study examined whether the ontogenetic status of the resurrection plant Craterostigma pumilum has an impact on how the plant responds to dehydration at the thylakoid membrane level to prepare cells for the desiccated state. Thus, younger plants (<4 months) were compared with their older (>6 months) counterparts. Ultrastructural analysis provided evidence that younger plants suppressed senescence-like programs that are realized in older plants. During dehydration, older plants degrade specific subunits of the photosynthetic apparatus such as the D1 subunit of PSII and subunits of the cytochrome b6f complex. The latter leads to a controlled down-regulation of linear electron transport. In contrast, younger plants increased photoprotective high-energy quenching mechanisms and maintained a high capability to replace damaged D1 subunits. It follows that depending on the ontogenetic state, either more degradation-based or more photoprotective mechanisms are employed during dehydration of Craterostigma pumilum.


Assuntos
Craterostigma , Fotossíntese , Craterostigma/fisiologia , Desidratação/fisiopatologia , Transporte de Elétrons , Fotossíntese/fisiologia , Tilacoides/fisiologia
15.
Cells ; 10(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571944

RESUMO

The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.


Assuntos
Benzamidas/farmacologia , Parede Celular/metabolismo , Craterostigma/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitrilas/farmacologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Craterostigma/efeitos dos fármacos , Craterostigma/crescimento & desenvolvimento , Secas , Herbicidas/farmacologia , Proteínas de Plantas/genética , Proteoma/análise , Proteoma/efeitos dos fármacos
16.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34165527

RESUMO

Acanthochlamys bracteata (Velloziaceae) is a resurrection plant with cold tolerance. Herein, a chromosome-level reference genome of A. bracteata based on Nanopore, Illumina, and Hi-C data is reported. The high-quality assembled genome was 197.97 Mb, with a scaffold N50 value of 8.64 Mb and a contig N50 value of 6.96 Mb. We annotated 23,509 protein-coding genes. Eight contracted gene families and three expanded gene families were detected. Repeat sequences accounted for approximately 28.63% of the genome. The LEA1 and Dehydrin gene families, which are involved in desiccation resistance, expanded in A. bracteata. We identified genes involved in chilling tolerance, COLD1.


Assuntos
Craterostigma , Cromossomos , Craterostigma/genética , Genoma , Genoma de Planta , Filogenia , Sequências Repetitivas de Ácido Nucleico
17.
Acta Biochim Pol ; 68(2): 277-286, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33979512

RESUMO

Haberlea rhodopensis is a paleolithic tertiary relict species that belongs to the unique group of resurrection plants sharing remarkable tolerance to desiccation. When exposed to severe drought stress, this species shows an ability to maintain structural integrity of its deactivated photosynthetic apparatus, which easily reactivates upon rehydration. In addition to its homoiochlorophyllous nature, the resurrection capability of H. rhodopensis is of particular importance to the global climate change mitigation. In this study, we sequenced, assembled, and analyzed the mitochondrial (mt) genome of H. rhodopensis for the first time. The master circle has a typical circular structure of 484 138 bp in length with a 44.1% GC content in total. The mt genome of H. rhodopensis contains 59 genes in total, including 35 protein-coding, 21 tRNAs, and 3 rRNAs genes. 7 tandem repeats and 85 simple sequence repeats (SSRs) are distributed throughout the mt genome. The alignment of 20 plant mt genomes confirms the phylogenetic position of H. rhodopensis in the Lamiales order. Our comprehensive analysis of the complete mt genome of H. rhodopensis is a significant addition to the limited database of organelle genomes of resurrection species. Comparative and phylogenetic analysis provides valuable information for a better understanding of mitochondrial molecular evolution in plants.


Assuntos
Craterostigma/genética , Genoma Mitocondrial , Craterostigma/metabolismo , Desidratação/metabolismo , Secas , Genes de Plantas , Lamiales/genética , Lamiales/metabolismo , Fotossíntese , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Sequências de Repetição em Tandem , Água
18.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918442

RESUMO

While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-ß-glucosidases, pectinesterases, polygalacturonases, ß-galactosidases and ß-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.


Assuntos
Vesículas Extracelulares/ultraestrutura , Magnoliopsida/metabolismo , Metabolismo Secundário , Técnicas de Cultura de Células , Células Cultivadas , Craterostigma , Fosfolipídeos/metabolismo , Proteoma
19.
Plant J ; 107(2): 377-398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33901322

RESUMO

The resurrection plant Craterostigma plantagineum possesses an extraordinary capacity to survive long-term desiccation. To enhance our understanding of this phenomenon, complementary transcriptome, soluble proteome and targeted metabolite profiling was carried out on leaves collected from different stages during a dehydration and rehydration cycle. A total of 7348 contigs, 611 proteins and 39 metabolites were differentially abundant across the different sampling points. Dynamic changes in transcript, protein and metabolite levels revealed a unique signature characterizing each stage. An overall low correlation between transcript and protein abundance suggests a prominent role for post-transcriptional modification in metabolic reprogramming to prepare plants for desiccation and recovery. The integrative analysis of all three data sets was performed with an emphasis on photosynthesis, photorespiration, energy metabolism and amino acid metabolism. The results revealed a set of precise changes that modulate primary metabolism to confer plasticity to metabolic pathways, thus optimizing plant performance under stress. The maintenance of cyclic electron flow and photorespiration, and the switch from C3 to crassulacean acid metabolism photosynthesis, may contribute to partially sustain photosynthesis and minimize oxidative damage during dehydration. Transcripts with a delayed translation, ATP-independent bypasses, alternative respiratory pathway and 4-aminobutyric acid shunt may all play a role in energy management, together conferring bioenergetic advantages to meet energy demands upon rehydration. This study provides a high-resolution map of the changes occurring in primary metabolism during dehydration and rehydration and enriches our understanding of the molecular mechanisms underpinning plant desiccation tolerance. The data sets provided here will ultimately inspire biotechnological strategies for drought tolerance improvement in crops.


Assuntos
Craterostigma/metabolismo , Craterostigma/anatomia & histologia , Craterostigma/fisiologia , Desidratação , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteômica
20.
Planta ; 253(5): 92, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33821335

RESUMO

MAIN CONCLUSION: The cell wall protein CpWAK1 interacts with pectin, participates in decoding cell wall signals, and induces different downstream responses. Cell wall-associated protein kinases (WAKs) are transmembrane receptor kinases. In the desiccation-tolerant resurrection plant Craterostigma plantagineum, CpWAK1 has been shown to be involved in stress responses and cell expansion by forming a complex with the C. plantagineum glycine-rich protein1 (CpGRP1). This prompted us to extend the studies of WAK genes in C. plantagineum. The phylogenetic analyses of WAKs from C. plantagineum and from other species suggest that these genes have been duplicated after species divergence. Expression profiles indicate that CpWAKs are involved in various biological processes, including dehydration-induced responses and SA- and JA-related reactions to pathogens and wounding. CpWAK1 shows a high affinity for "egg-box" pectin structures. ELISA assays revealed that the binding of CpWAKs to pectins is modulated by CpGRP1 and it depends on the apoplastic pH. The formation of CpWAK multimers is the prerequisite for the CpWAK-pectin binding. Different pectin extracts lead to opposite trends of CpWAK-pectin binding in the presence of Ca2+ at pH 8. These observations demonstrate that CpWAKs can potentially discriminate and integrate cell wall signals generated by diverse stimuli, in concert with other elements, such as CpGRP1, pHapo, Ca2+[apo], and via the formation of CpWAK multimers.


Assuntos
Parede Celular/metabolismo , Craterostigma/enzimologia , Meio Ambiente , Pectinas/metabolismo , Proteínas Quinases/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...